large scale Refactoring
Volodymyr Fedak

Platinum Sponsor
Who Am I
Solution Architect at SoftServe with 9+ years experience in IT
Ongoing project: Significant efforts are dedicated to the following quality attributes: testability, extensibility, maintainability
A lot of efforts are spent on evolving legacy projects

Platinum Sponsor
Agenda

Platinum Sponsor

3

Refactoring strategies

Summary

Case study

Why do we change code?

Why refactor?

Four Reasons to Change Software

Platinum Sponsor
Adding a feature

Fixing a bug

Improving the design

Optimizing resource usage

Any fool can write code that a computer can understand. Good programmers write code that humans can understand

Platinum Sponsor

5

What is not refactoring

Refactoring is not debugging

Refactoring is not performance

Refactoring is not adding a feature

Platinum Sponsor
"Refactoring is a disciplined technique for restructuring an existing body of code, altering its internal structure without changing its external behavior."

What is refactoring?

Platinum Sponsor

7

Refactoring is an continuous process

Platinum Sponsor

8

Restructuring of existing code that has visible influence to the overall system quality attributes.
What is large scale refactoring?

Platinum Sponsor

9

Agenda

Platinum Sponsor

10

Refactoring strategies

Summary

Case study

Why do we change code?

Why refactor?

Success projects statistics

Platinum Sponsor
Legacy projects: technical perspective

Platinum Sponsor
Legacy projects team policies and practices
They minimize the number of changes that they make to the code base
Sometimes this is a team policy: "If it's not broken, don't fix it”
Developers
What? Create another method for that? No, I'll just put the lines of code right here in the method, where I can see them and the rest of the code. It involves less editing, and it's safer

Platinum Sponsor
After such policy

Platinum Sponsor
Refactoring helps

Make the code easier to understand

Make it easier to maintain codebase

Refactoring reduces your risk—can lead to lightweight
pragmatic design

Improve code quality. You Can’t be Agile if your code sucks!

Platinum Sponsor
Refactoring principles

Don’t write code that’s really not needed, Code you don’t write, don’t have to be maintained!

Avoid Clever Code—Keep it Simple

Keep code DRY

Rely on automated tests

Platinum Sponsor
Refactoring principles

Checkin Frequently, take small steps

Make sense in seconds, not in minutes, hours, weeks, ...

Make code self documented

Platinum Sponsor
Agenda

Platinum Sponsor

18

Refactoring strategies

Summary

Case study

Why do we change code?

Why to refactor workable code?

Refactoring Catalog

Platinum Sponsor
Mikado method

A change
We need to change this

Platinum Sponsor
Mikado method

A change
When we changed this

Platinum Sponsor

Prereq
Mikado method

A change
So it’s time to note all prerequisites

Platinum Sponsor

Prereq

Prereq
Mikado method

A change
So it’s time to note all prerequisites

Platinum Sponsor

Prereq

Prereq

Prereq
Mikado method

A change
So it’s time to note all prerequisites

Platinum Sponsor

Prereq

Prereq

Prereq
Mikado method

A change
When we tried refactor this

Platinum Sponsor

Prereq

Prereq

Prereq
Mikado method

A change
We’ve got new errors

Platinum Sponsor

Prereq

Prereq

Prereq

Prereq

Prereq
Mikado method

A change
Noted new prerequisites

Platinum Sponsor

Prereq

Prereq

Prereq

Prereq

Prereq
Mikado method

A change
And reverted again

Platinum Sponsor

Prereq

Prereq

Prereq

Prereq

Prereq
Mikado method

A change
Until we could do prerequisites without errors

Platinum Sponsor

Prereq

Prereq

Prereq

Prereq

Prereq
Mikado method

A change

Platinum Sponsor

Prereq

Prereq

Prereq

Prereq

Prereq
Mikado method

A change

Working the way back to original change

Platinum Sponsor

Prereq

Prereq

Prereq

Prereq

Prereq
Mikado method

A change

Now the change is easy to implement

Platinum Sponsor
Benefits of such approach

Codebase every time is in good state

You won’t have such situation that time is go on and everything is broken

You always keep focus on target

Platinum Sponsor
Refactoring strategies

Platinum Sponsor

Big Bang - Define the structure for the final state and push code to its ultimate home

Divide and conquer - Try to separate the big ball of mud into two pieces. Repeat until done...

Strangling

Why people like big bang?

Strangling is very expensive, It’s cute but not for us

We don’t have tight schedule for this refactoring, let’s safely make a changes in branch

We have to do a lot of changes we can’t divide problem into pieces

It’s a risky

Platinum Sponsor
Why do we need to refactor code ?
Did you face with such term as “Risky change” ?

Platinum Sponsor
What information is hidden?
From practical standpoint big bang never happens successfully

Platinum Sponsor
Agenda

Platinum Sponsor

38

Refactoring strategies

Summary

Case study

Why do we change code?

Why to refactor workable code?

Case study
What refactor strategy should be used ?

Platinum Sponsor

Big Bang - Define the structure for the final state and push code to its ultimate home

Divide and conquer - Try to separate the big ball of mud into two pieces. Repeat until done...

Strangling

We used mixed

Platinum Sponsor

Divide and conquer - Try to separate the big ball of mud into two pieces. Repeat until done...

Strangling

Refactoring taxonomy

Platinum Sponsor

Create infrastructure to switch implementations

Utilize dependency injection

Guarantee that we have reliable mechanism to check that everything works

Finish refactoring (divide and conquer)

Guarantee that we have reliable mechanism to check that everything works

Platinum Sponsor

Initiated integration tests

UI automation tests check that everything is verified

Unit tests: create necessary coverage and verifications for authentication/authorization flows

Don’t forget about concurrent scenarios

Create infrastructure: gather old structure

Application
Security Old code structure

Session context

Platinum Sponsor
Create infrastructure: Create new structure

Application
Security Old
Security New Adapter
35% of deal

Platinum Sponsor
Utilize Dependency Injection

Switch (web.xml)
Security Old (application context)

Security New (application context

Adapter API
Interfaces only

Security New classes (implemented in v2 package)

Spring managed context
Security Old classes
(Current implementation)

Servlet session context
Application Code

Old Application boundaries
New application boundaries
Adapter classes

Platinum Sponsor
Finish refactoring: make new Security workable

Switch (web.xml)
Security New (application context

Adapter API
Interfaces only

Security New classes (implemented in v2 package)

Spring managed context
Application Code

New application boundaries

Platinum Sponsor
Finish refactoring drop old code

Switch (web.xml)
Security Old (application context)

Adapter API
Interfaces only

Security Old classes
(Current implementation)

Servlet session context
Application Code

Old Application boundaries
Adapter classes

Platinum Sponsor
Summary
Please don’t believe in risk
Write code that doesn’t require further refactoring
In case you need to refactor a large project please think 10 times before doing this.

Platinum Sponsor

48

Write code to have your house in good state

Platinum Sponsor
Useful Links
Refactoring Large Software Systems
Michael C. Feathers Working efficiently with legacy code
Refactoring legacy applications
Large scale refactoring

Platinum Sponsor
Questions

Platinum Sponsor
image5.gif

image10.png

image11.jpeg

image12.gif

image13.png

image14.jpeg

image15.jpeg

image16.png

image17.jpeg

image21.jpeg

image23.jpeg

image24.jpeg

image25.jpeg

image26.jpeg

image27.jpeg

image1.jpeg

image2.png

image3.png

image4.png

