Blue Print for Future Applications

Dr. Roland Kuhn

Akka Tech Lead
@rolandkuhn

::: Typesafe




The Four Reactive Traits



http://reactivemanifesto.org/

The User



| E

w



internal
service

g storage

frontend internal
server service

external
service



Responsiveness



Bounded Latency




Bounded Latency

* fan-out in parallel and aggregate




Bounded Latency

fang S ~




Bounded Latency

fang S ~




Bounded Latency

fang S ~




Bounded Latency

* fan-out in parallel and aggregate

* use circuit breakers tor graceful degradation




Bounded Latency

< fanr o ~

o)

fail fast




Bounded Latency

* fan-out in parallel and aggregate

* use circuit breakers tor graceful degradation

* use bounded queues, measure flow rates




Bounded Latency

* fans~ N\

* use

° yse Use Bounded Queues:

Latency = Queuelength » Processinglime

(for reasonably stable average processing time)

oi= Typesafe 8



Bounded Latency

* fans~ N\

* use

° yse Use Bounded Queues:

Latency = Queuelength » Processinglime

(for reasonably stable average processing time)

oi= Typesafe 8




Responsive in the Face of Failure



Handle Failure

* software will fail
* hardware will fail

* humans will fail

» system still needs to respond == resilience




Distribute!




Asynchronous Failure

» parallel fan-out & distribution
"= 3SyNchronous execution

» compartmentalization & isolation




Asynchronous Failure

» parallel fan-out & distribution
= 3synchronous execution

» compartmentalization & isolation
°* NO response? "> timeout events

* someone else’s exception? = supervision




Asynchronous Failure

* paralle” A
"y Failure
* compe
®* NO res| Request >.
* somec
. Response

\_




Asynchronous Failure

* paralle”
= 3SY

F
* COMPpa
* NO resj Request
* somed n

/




Asynchronous Failure

» parallel fan-out & distribution
= 3synchronous execution

» compartmentalization & isolation
°* NO response? "> timeout events

* someone else’s exception? = supervision
* location transparency = seamless resilience




Responsive in the Face of Changing Load



Handle Load




d
S
©
-
2
=
=
S
-




Handle Load

» partition incoming work for distribution
* share nothing
* scale capacity up and down on demand

* supervise and adapt

* location transparency
= seamless scalability




Handle Load

» partition incoming work for distribution
* share nothing
* scale capacity up and down on demand

* supervise and adapt

* location transparency
= seamless scalability

R

::: Typesafe



... this has some interesting consequences!



Consequences

* distribution & scalability
= |0sS Of strong consistency

* CAP theorem? — not as relevant as you think

* eventual consistency
= 005Sip, heartbeats, dissemination of change

Pat Helland: Life beyond Distributed Transactions

Peter Bailis: Probabilistically Bounded Staleness (http.//pbs.cs.berkeley.edu)



http://pbs.cs.berkeley.edu/

Consequences

* distribution & scalability
= |0sS Of strong consistency

* CAP theorem? — not as relevant as you think

* eventual consistency
= 005Sip, heartbeats, dissemination of change

Pat Helland: Life beyond Distributed Transactions
Peter B@%babiﬁst/m//y Bounded Staleness (http.//pbs.cs.berkeley.edu)

::: Typesafe


http://pbs.cs.berkeley.edu/

Corollary

* Reactive needs to be applied all the way down

* Polyglot deployments demand collaboration
= for example http://reactive-streams.org/



http://reactive-streams.org/

But what about us,
the developers?



Step 1: Take a Leap of Faith

* thread-based models have made us defensive

*» “don’t let go of your thread!”

* “asynchrony is suspicious”

* “better return strict value, even it that needs blocking”




Step 1: Take a Leap of Faith

* thread-based models have made us defensive

*» “don’t let go of your thread!”

* “asynchrony is suspicious”
* “better return strict value, even it that needs blocking”

* it is okay to write a method that returns a Future!




Step 2: Rethink the Architecture

* break out of the synchronous blocking prison

* focus on communication & protocols

* asynchronous program flow
= No step-through debugging
= tracing and monitoring

* loose coupling




Step 3: Profit!

* clean business logic, separate from failure
handling

* distributable units of work

* offortless parallelization

* less assumptions = [ower maintenance cost




Step 3: Profit!

* clean business logic, separate from failure
handling

* distributable units of work

* offortless parallelization

* less assumptions = lower maintenance cost

* independent agents " fun to work with!




Summary



The Four Reactive Traits



http://reactivemanifesto.org/

:5 Typesafe

©Typesafe 2014 - All Rights Reserved



